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DETERMINATION OF FREE MOTION PERIODS OF SKELETON-TYPE 
BUILDINGS WITH STRAIGHT LINEARIZATION METHOD 

 
V.A. Ambartsumyan, L.LEVONYAN 

State University of Architecture and Construction of Erevan 
 
 
Free nonlinear motions of a skeleton-type building have been studied, the dynamic design scheme of 
which appear in the form of systems with a finite numbered degree of freedom. The straight 
linearization method has been used. Values of nonlinear motion periods have been obtained for 
different real dependencies of the restoring force upon displacement.  
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Most frequently applied methods for researching free (independent) non-linear motions 
are the following; perturbation method, asymmetric method of Krilov-Bogoliubov, 
Galergin method, etc. [3,6,7]. The systems with one degree of freedom are studied most 
thoroughly. The works dedicated to non-linear oscillations with many degrees of freedom 
are quite few. Mainly, the oscillations with two degrees of freedom are studied. Individual 
multimass systems using potential function and applying the properties of geodesic lines in 
space are studied in the works and particular results are obtained. Values of free motion 
periods of multi-storey buildings when the dependence of the restoring force on the floor 
displacement has the form of a cubic parabola are obtained in the works [4] using 
asymmetric method. Values of non-linear oscillation periods in case of the power 
dependence of the restoring force on the displacement are obtained in the work [5]. Some 
specific results are also shown in the works [3, 6, 8, 9] and they include, especially [9], 
detailed analysis of the existing methods for researching the non-linear systems. The work 
[7] includes the method of straight linearization and its essence is replacement of the 
specified non-linear system by the linear one. At the same time, the condition of the 
minimum of the quadratic deflection between the restoring forces of specified non-linear 
and obtained linear systems is used. 
The method of straight linearization in this work covers the systems with many degrees of 
freedom. It is shown, that the computation simplicity of this method allows to get the values 
of free motion periods in an evident shape for many actually important cases of the 
dependences of the restoring force on the oscillation. The system oscillations with one 
degree of freedom for which new results on the non-linear oscillation periods are obtained 
were researched as well. 
Let’s review free motions of one-storey frame with rigid girder the design diagram of 
which is presented in form of the system with one degree of freedom (figure 1). 
Equation of free motion systems when the dependence of the restoring force on the 
displacement is non-linear can be presented as follows: 
 

0)y(af
dt

ydm 2

2

=+ ,      (1) 

where y – oscillation; m – lumped inertia; )y(af)y(R = - restoring force; a – initial stiffness 
of the system; ϕ= tga  - (figure 2); )y(f - function characterizing the dependence of the 
restoring force on the displacement. 
In a linear nonrigid system )y(f =y. 
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Figure 1. a – Frame Diagram; b – Dynamic Design Diagram 
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                                                              b) 

 

 

 

 

 

 

 

 

 

 

 

c) 

Figure 2. Dependence of Restoring Force on Displacement. a – Curvilinear; b – Bilinear;  
c – Three-linear 

 
Initial horizontal stiffness of the system which at the same time is the stiffness of the 
respective linear system is determined by formula [6]: 
 

                                                           ∑
=

=
N

1j
j3 J

H
12a Ε  ,              (2) 

where E – module of column flexibility; jJ - moment of inertia of j column cross-section; N 
– number of frame columns (on figure 1 N = 3). 
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Let’s assume, that specified (averaged) stiffness of прa  non-linear system is found, than the 
equation of free motions of the specified systems will have the following form: 
 

0ya
dt

ydm 2

2

=⋅+ пр .     (3) 

The variety of the restoring forces )y(r of non-linear and linear system 
 

ya)y(fa)y(r ⋅−⋅= пр .              (4) 

In order to emphasize the significance of deviations in large values y, )y(r variety is taken 
in form of: 

     y]ya)y(fa[)y(r ⋅⋅−⋅= пр .            (5) 

Problem is reduced to the integral minimization: 

∫
−

⋅⋅−⋅=
Y

Y

22 dyy]ya)y(fa[I пр .    (6) 

We have: 

0dyy]ya)y(fa[2
da
dI 3

Y

Y

=⋅⋅−⋅−= ∫
−

пр
пр

.                  (7) 

We obtain: 

∫

∫

−

−

⋅

= Y

Y

4

Y

Y

3

dyy

dyy)y(fa
aпр .     (8) 

Taking into the account that there are even functions under the integral, we find: 

∫=
Y

0

3
5 dyy)y(f

Y
a5aпр .     (9) 

Frequency of the specified system which at the same time is the frequency of non-linear 
system is determined by the formula: 

m
пр

прив

a
=ω .         (10) 

By placing the value (9) into (10), we will get: 
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⋅=ω=ω ∫∫ лин.нел.прив  .  (11) 

Non-linear system period is identified by formula: 



V.Ambartsumyan,...                                                                            Energyonline №1(4), 2011 

 5

2/1

Y

0

3

5

2/1

Y

0

3

5

dyy)y(fa5

YT

dyy)y(fa5

Y
a
m2

a
m2TT

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⋅=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⋅π=π==

∫∫
лин.

пр
нел.прив  . (12) 

Let’s discuss a case when the restoring force changes under the law of part of cubic 
parabola having the form of: 

3yy)y(f ε−= ; 2y3
1

≤ε .    (13) 

In such case, from (9) and (10) will obtain: 

  
2/1

2
линпр Y

7
51 ⎟

⎠
⎞

⎜
⎝
⎛ ε−ω=ω .              (14) 

For case (13) there is an exact solution expressed through the elliptical integral of the first 
type (for instance, [6]). 
In 3/1Y 2 =ε  .лин.нел T146.1T = and 1.154Тлин. [6] the value of the exact and approximate 
periods varies by just 0.7%. 
In bilinear diagram (figure 2, b) the function )y(f  will be written in form of: 

                                                 
⎩
⎨
⎧

≥γ−+γ
≤

=
,yy    ;y)1(y
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11

1           (15) 

where a/a1=γ . 

From (11) will obtain: 
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In 
4
1

a
a1 ==γ ;  2

y
Y

1
==β . From (16) will obtain: 

.лин.нел 844.0 ω=ω ;       184.1TT .лин.нел ⋅= . 

Exact value of the period in the above parameters [6] 

193.1TT .лин.нел ⋅= . 

The difference makes 0.75%. 
In case of the dependence of the restoring force on the displacement consisting of three 
rectilinear sections (figure 2, c) the function )y(f  is presented in form of: 

⎪
⎩

⎪
⎨

⎧

≥γ−γ+γ−+γ
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≤

=

2221112

2111

1

yy    ;y)(y)1(y
yyy       ;y)1(y

yy           ;y
)y(f ,  (17) 

where
a

a1
1 =γ ; 

a
a2

2 =γ ;   ϕ= tga ;   11 tga ϕ= ;   22 tga ϕ= (figure 2, c). 

In such case, from (11) will have: 



V.Ambartsumyan,...                                                                            Energyonline №1(4), 2011 

 6

   
2/15

15
211

1
2112.лин.нел Y

y
)(

4
1)1(

4
1

Y
y

])(1[
4
5

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ βγ−γ+γ−−βγ−γ+γ−+γω=ω ,        (18) 

Where Y – initial displacement )yY( 2> ;  
1

2

y
y

=β . 

It is not difficult to obtain the value of frequency of nonlinear oscillations when the 
dependence R -у is presented in form of the curve consisting of many rectilinear sections. It 
should be noted that it is either complicated or impossible to get this frequency in an 
evident form. 
Let’s review the case when the dependence R -у is presented in form of arbitrary power 
series. We have: 

∑
∞

=

=
1j

j
jyb)y(f ,            (19) 

where jb - defined coefficients of series. 
The frequency of non-linear oscillations in this case is in form of: 

                                                          ∑
∞

=

−

+
ω=ω

1j

1jj
.лин.нел y

1j
b5

 .          (20) 

From (20) the frequency value can be obtained in case of (13) and also other versions 
described in [3,7]. 
Let’s determine the frequency value when the R -у dependence is presented in form of 
ascending part of sinusoid. 
The function )y(f is given in form of: 

ysin1)y(f ε
ε

= ;       
y2
π

≤ε .    (21) 

The frequency of non-linear oscillation 
2/1
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Some functions such as cubic parabola or sinusoid are often used in researching the non-
linear oscillations. However, these functions are limited by the forms (13), (21) that are 
associated with the fact that just an ascending part of these functions are used. This 
reduces the possibility of practical application of these dependences, as the value of 
ε coefficients included in these formulas should be small. From this point of view, it is 
suitable to use the functions having just the ascending part, i.e. their derivatives are always 
positive. One of such functions is arctangent function. Let’s present the function )y(f in 
form of: 

yarctg1)y(f ε
ε

= .     (23) 

In this case, for frequency will write: 
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Using the formula (24) the values 
.лин

.нел

ω
ω  and then 

.лин

.нел

T
T  are deducted in various Yε values. 

Calculation results are given in Table 1. 

    Values 
.лин

.нел

ω
ω and 

.лин

.нел

T
T  

                      Table 1 

Yε  
.лин

.нел

ω
ω  

.лин

.нел

T
T  

1 0.913 1.095 
2 0.789 1.267 
4 0.625 1.600 
5 0.570 1.754 
6 0.531 1.883 
8 0.469 2.134 

10 0.424 2.360 
 

As seen from table 1, the frequencies of the non-linear oscillations in increasing 
Yε decrease in comparison with the frequencies of the linear oscillations, and the periods 

increase. 
Let’s now review free non-linear motions of multi-storey frames with rigid girders the 
design diagram of which is presented in form of the system with finite number of the 
degrees of freedom (figure 3). 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 3. Diagram of Building Deformation 
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Figure 4. Dependence of Restoring Force on Floor Skewing 
 

Equations of the free motions of non-linear nonrigid system can be written in form of [6]: 

0)yy(R
dt

yd
m 1kkk

n

ki
2

i
2

i =−+ −
=
∑ ;   n,...,2,1k = ,   (25) 

where ky - displacement of k floor, im - inertia lumped at the level of k floor; )yy(R 1kkk −− - 
restoring force of )yy(R 1kkk −−  k floor; n – number of floors. 

In future we will accept that the hardness of all the floors is equal. The restoring force of k 
floor will be: 

)yy(af)yy(R 1kkk1kkk −− −=− ,    n,...,2,1k = ,    (26) 

where a – initial floor hardness. 
 
We accept that the non-linear system can be replaced by the linear one with the hardness 

.прa In such case the restoring force of the floor will be: 
)yy(a)yy(R 1kk.пр1kkk −− −=− .      (27) 

Let’s put together the differential of the restoring forces of the specified non-linear and 
linear systems. We accept that the coefficients of the oscillation form of the nonlinear 
system are proportional to the coefficients of the forms of the linear system. Like in (6), in 
this case the problem is reduced to the minimization of the integral representing mean-
square residual of the restoring forces of the non-linear and linear systems: 
 

∑ ∫
=

−

−−−−

−

−−−−−=
n

1k

)CC(Y

0
1kk

2
1kk

2
1kk.пр1kkk

1kk

)yy(d)yy()]yy(a)yy(af[2I ,  (28) 

where kC - specified coefficients of basic oscillation forms. 
Let’s identify )yy( 1kkk −−=Δ ;  1kkk CC −−=Δ . 
From (28) we have: 

Rk 

yk - yk-1 

a=tgϕ 
aпр.=tgϕ пр. 

A(C k - C k-1) 
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From here will obtain: 
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The oscillation frequency of the major tone of the system with .прa the hardness and 
m lumped inertia will be written in such a way: 
 

1
.пр2

.нел
2

m
a

.пр
λ=ω=ω ,     (31) 

where 1λ - coefficient depending on number of floors. Placing (30) in (31) will obtain: 
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Since 2
.лин1m

a
ω=λ from (32) will obtain: 
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.нелω values in case of the same dependencies that were researched for the system of one 
degree of freedom can be identified by the formula (33). 
Let’s review various cases of the non-linear laws of the restoring force variation. 
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kkk k
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From (33) will obtain: 
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For .нелω will get: 
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In case of the formula (45), the values .лин.нел / ωω and then .лин.нел / ωω  for n = 5 are 
calculated. The obtained values kC , kΔ  )5,...2,1k( = taken from [6] are provided in Table 2. 
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     Table 2 
k  kC  kΔ  
1 0.2856 0.2856 
2 0.548 0.2624 
3 0.7656 0.2176 
4 0.922 0.1564 
5 1 0.078 

 
The values Tnonlinear/Tlinear in case of 10,8,6,4,2Y =ε  were respectively 1.04; 1.1; 1.194; 1.285; 
1.381. It is interesting to compare Tnonlinear/Tlinear  obtained in case of 1n =  and 5n = . 
Respective dependences are given in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Dependences of Period Relation on Displacement 
 

As seen from this diagram, Tnonlinear/Tlinear increases together with increasing Yε . At the 
same time, in case of the same displacement Yε , the relation Tnonlinear/Tlinear is more in one-
storey building. 
In all the reviewed cases of non-linear deformation the loading and unloading occurred 
under the same linear law. If the loading occurs under the non-linear law and the 
unloading under the linear law, than the period of hysteretic oscillations .гисT can be 
determined by formula [4]. 

2
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.гис

+
= ,      (46) 

where Tnonlinear/Tlinear – respectively the period of the non-linear and linear oscillations. 
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