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DETERMINATION OF FREE MOTION PERIODS OF SKELETON-TYPE
BUILDINGS WITH STRAIGHT LINEARIZATION METHOD

V.A. Ambartsumyan, LLEVONYAN

State University of Architecture and Construction of Erevan

Free nonlinear motions of a skeleton-type building have been studied, the dynamic design scheme of
which appear in the form of systems with a finite numbered degree of freedom. The straight
linearization method has been used. Values of nonlinear motion periods have been obtained for
different real dependencies of the restoring force upon displacement.
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Most frequently applied methods for researching free (independent) non-linear motions
are the following; perturbation method, asymmetric method of Krilov-Bogoliubov,
Galergin method, etc. [3,6,7]. The systems with one degree of freedom are studied most
thoroughly. The works dedicated to non-linear oscillations with many degrees of freedom
are quite few. Mainly, the oscillations with two degrees of freedom are studied. Individual
multimass systems using potential function and applying the properties of geodesic lines in
space are studied in the works and particular results are obtained. Values of free motion
periods of multi-storey buildings when the dependence of the restoring force on the floor
displacement has the form of a cubic parabola are obtained in the works [4] using
asymmetric method. Values of non-linear oscillation periods in case of the power
dependence of the restoring force on the displacement are obtained in the work [S5]. Some
specific results are also shown in the works [3, 6, 8, 9] and they include, especially [9],
detailed analysis of the existing methods for researching the non-linear systems. The work
[7] includes the method of straight linearization and its essence is replacement of the
specified non-linear system by the linear one. At the same time, the condition of the
minimum of the quadratic deflection between the restoring forces of specified non-linear
and obtained linear systems is used.

The method of straight linearization in this work covers the systems with many degrees of
freedom. It is shown, that the computation simplicity of this method allows to get the values
of free motion periods in an evident shape for many actually important cases of the
dependences of the restoring force on the oscillation. The system oscillations with one
degree of freedom for which new results on the non-linear oscillation periods are obtained
were researched as well.

Let’s review free motions of one-storey frame with rigid girder the design diagram of
which is presented in form of the system with one degree of freedom (figure 1).

Equation of free motion systems when the dependence of the restoring force on the
displacement is non-linear can be presented as follows:

dzy

IIIF + af(y) =0 . (1)
where y — oscillation; m — lumped inertia; R(y) = af(y)- restoring force; a — initial stiffness
of the system; a=tgp - (figure 2); f(y)- function characterizing the dependence of the

restoring force on the displacement.
In a linear nonrigid system f(y)=y.



V.Ambartsumyan,... Energyonline Nel1(4), 2011

| y I le y L

A 71 A Kl A gl
—r— EETEEIR ,

a) b)

Figure 1. a — Frame Diagram; b — Dynamic Design Diagram
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Figure 2. Dependence of Restoring Force on Displacement. a — Curvilinear; b — Bilinear;
¢ — Three-linear

Initial horizontal stiffness of the system which at the same time is the stiffness of the
respective linear system is determined by formula [6]:

N
a=£ZEJj , Q)
j=1

where E — module of column flexibility; J;- moment of inertia of jcolumn cross-section; N
— number of frame columns (on figure 1 N = 3).
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Let’s assume, that specified (averaged) stiffness of a, non-linear system is found, than the

equation of free motions of the specified systems will have the following form:

dzy

dt?

m +a, -y=0. A3)

The variety of the restoring forces r(y) of non-linear and linear system

r(y)=a-f(y)-a, -y. 4)

In order to emphasize the significance of deviations in large values y, r(y) variety is taken
in form of:
r(y)=[a-f(y)—a,-y]-y. &)

Problem is reduced to the integral minimization:

Y
I= j'[a-f(y)—anp-ylz-yzdy- (6)
-Y
We have:
d1 H
—=—ZI[a-f(y)—anp-y]-y3dy=0- ()
daHp Y
We obtain:

[a-f(vy’dy
A, =Y. @)

np Y
[yay
-Y
Taking into the account that there are even functions under the integral, we find:
Sa |
a,, = —sjf(y)y3dy . ©
Y 0

Frequency of the specified system which at the same time is the frequency of non-linear
system is determined by the formula:

M- (10)

m

By placing the value (9) into (10), we will get:

5 Y 1/2 5 % 1/2
_. o _|als 3 e 15 3
@ s = Pren —\E {YS !f(y)y dy} ® {YS !f(y)y dy} . 1)

Non-linear system period is identified by formula:



V.Ambartsumyan,... Energyonline Nel1(4), 2011

1/2 1/2

Y? Y?
Ty =T =2m |2 =2m [ S b =T, . (12)
a_ a
i sa[ f(y)y*dy sa[ f(y)y*dy
0 0

Let’s discuss a case when the restoring force changes under the law of part of cubic
parabola having the form of:

1
f(y)=y-gy’; 83?- 3)

In such case, from (9) and (10) will obtain:

5 1/2
O, =mmm[1—78Y2J . (14)

For case (13) there is an exact solution expressed through the elliptical integral of the first
type (for instance, [6]).

In ¢Y’=1/3 T,, =1.146T,,, and 1.154T,,,. [6] the value of the exact and approximate
periods varies by just 0.7%.

In bilinear diagram (figure 2, b) the function f(y) will be written in form of:

Y5 YV
f(y)={ as)
YYy+A=Y)y;5 Y2y,

wherey=a,/a.

From (11) will obtain:

1/2
_ 5. v (1-Y)(y,)
O e, _(Dmm.{y-l- 4(1 Y) Y 4 (Y] } . (16)

In y= s l; B= XY_ 2. From (16) will obtain:
a 4 &)

O e, = 0.84400 Toen. = T, - 1.184.

Exact value of the period in the above parameters [6]
Then =T - 1.193.
The difference makes 0.75%.

In case of the dependence of the restoring force on the displacement consisting of three
rectilinear sections (figure 2, c) the function f(y) is presented in form of:

ys Y=<y,
f()=1v,y+A-7)y;5 Yy <y<y, , a7
Y2y A=Yy + (Y1 —72)¥Y25 Y2V,
a a
Where'Yl::]; "/2:?2; a=1tgp; a, =tge,; a,=rtgp, (figure2,c).

In such case, from (11) will have:
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1/2
5 1 1 °
Oyen. =°)mm.{72 +Z[1_'Y1 + (v, _Yz)ﬁ]yvl_[z(l_%)"'z(% _Yz)BS}(yYI] } ) (18)

Where Y - initial displacement(Y >y,); B= Y2

1
It is not difficult to obtain the value of frequency of nonlinear oscillations when the
dependence R -y is presented in form of the curve consisting of many rectilinear sections. It
should be noted that it is either complicated or impossible to get this frequency in an
evident form.

Let’s review the case when the dependence R-y is presented in form of arbitrary power
series. We have:

fy)=> by, (19)
=1

where b i defined coefficients of series.

The frequency of non-linear oscillations in this case is in form of:
© 5Sb.
]

ml‘leﬂ. = O).J'IHH. Z

i+l

From (20) the frequency value can be obtained in case of (13) and also other versions
described in [3,7].

Let’s determine the frequency value when the R-y dependence is presented in form of
ascending part of sinusoid.

y. (20)

The function f(y)is given in form of:

1
f(y) = —singy; g, (21)
€ 2y
The frequency of non-linear oscillation
15 30 15 30 "
O, =0 3| ——5——== |singY -| ———— |coseY . 22
HelL. '{(83Y3 SSYSJ (SZYZ 84Y4) } (22)

Some functions such as cubic parabola or sinusoid are often used in researching the non-
linear oscillations. However, these functions are limited by the forms (13), (21) that are
associated with the fact that just an ascending part of these functions are used. This
reduces the possibility of practical application of these dependences, as the value of
¢ coefficients included in these formulas should be small. From this point of view, it is
suitable to use the functions having just the ascending part, i.e. their derivatives are always
positive. One of such functions is arctangent function. Let’s present the function f(y)in

form of:

1
f(y) = —arctgey . (23)

€

In this case, for frequency will write:
1/2
5 arctgeY 5 5 5

Oy, =@ — - + - arctgeY . 24
“““'{4 &Y  126°Y'  4e'Y' 4eYS o © } 9
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Using the formula (24) the values Ouer. and then TPI& are deducted in various &Y values.
®

JIMH. JIMH.

Calculation results are given in Table 1.

® T
Values =% and T"e“‘

O iy, JIMH.
Table 1
% O yen. THeJI.
& () J— TJ'llH{.
1 0.913 1.095
2 0.789 1.267
4 0.625 1.600
5 0.570 1.754
6 0.531 1.883
8 0.469 2.134
10 0.424 2.360

As seen from table 1, the frequencies of the non-linear oscillations in increasing
€Y decrease in comparison with the frequencies of the linear oscillations, and the periods
increase.

Let’s now review free non-linear motions of multi-storey frames with rigid girders the
design diagram of which is presented in form of the system with finite number of the
degrees of freedom (figure 3).

Figure 3. Diagram of Building Deformation
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Figure 4. Dependence of Restoring Force on Floor Skewing

Equations of the free motions of non-linear nonrigid system can be written in form of [6]:

n dzyi
D m, o TR ¥)=0; k=12, (25)
i=k

where y, - displacement of k floor, m;- inertia lumped at the level of k floor; R, (Y, —¥._{)-
restoring force of R, (y, —y,_;) K floor; n — number of floors.

In future we will accept that the hardness of all the floors is equal. The restoring force of k
floor will be:

Ry(Yyx —¥k)=af (Y = Vit)» k=12,.m, (26)

where a — initial floor hardness.

We accept that the non-linear system can be replaced by the linear one with the hardness
a,, In such case the restoring force of the floor will be:

Ry(Yk = Yuer) =2, (Vi = Vi) - (27)
Let’s put together the differential of the restoring forces of the specified non-linear and
linear systems. We accept that the coefficients of the oscillation form of the nonlinear
system are proportional to the coefficients of the forms of the linear system. Like in (6), in
this case the problem is reduced to the minimization of the integral representing mean-
square residual of the restoring forces of the non-linear and linear systems:

n  Y(C—Cyy)

1=3"2 [[af, 0 = Vi) = 30 O = Yie)l (i = Vi) 40 = Vi) (28)
k=1

0
where C, - specified coefficients of basic oscillation forms.
Let’s identify A, =(y, —y,,); A, =C, -C,,-
From (28) we have:
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n KkY n Kk\(

dI =-4) [af, () ALdA, +4) [Atanr, =0 29
da np. k=1 k=1 o
From here will obtain:
n ALY
fk (Ak ) . A3dek

_Sak= ) (30)

np YS i ZS

k=1 *

The oscillation frequency of the major tone of the system with a  the hardness and

m lumped inertia will be written in such a way:

0} =0, =", &)
. m
where A, - coefficient depending on number of floors. Placing (30) in (31) will obtain:
n ALY
Z Ifk(Ak)' A3dek
0 =2a, 22kl : 32)

= s
mp. m YS

RS
k=1

Since 17»1 =2 from (32) will obtain:
m

JIMH .

— 1/2
n ALY

kf A )-ASdA
5_32{( o) ALda,
k=1

®,., Values in case of the same dependencies that were researched for the system of one

degree of freedom can be identified by the formula (33).
Let’s review various cases of the non-linear laws of the restoring force variation.

(33)

wer. = O

L f,(A)=A, —¢A’. 34)
From (33) will obtain:
n n 1/2
[Ask aYZ}Z A
0‘)Hen. = mmm. <= n . * (35)
LA
k=1
2. £,(A)=D bA . (36)
j=1
For o, will get:
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1
3. f,(A,)=—sineA, .
>

N1/2

2 [ 34 6 | A e _
52 o T s [SineYA, —| St ——— lcoseYA,
w=ileY e’Y e'Y e'Y
Open. = O pyp. n ¢
28
k=1
A=Ay

A
4. fk(Ak)={ «
YA, +A=7)A 5 AL 2A,.

1/2
S| (-1 AL v - AL A-1AAL
4 YS 4 Y

>
k=1

Ays A=Ay
S. (A =171A + (=Y )DAs Ay <AL <A
[V, Ak + A=y DAL + (Vi —¥2)ALDL Ay 2AL;

1/2

5
5 A 1 1 A
+SM =y, +(y, - =k A=y )+ (Y, - S Sk
) 4[ Y1+ (Y, YZ)B]AkY |:4( Y1) 4(71 Y,)B :|[AkY
O)He.fl =0)ﬂllﬂ n
ZS
k=1 ‘
1
6. f, (A, ) =—arctgeA, .
g
n 5 5 5 5 1/2
—~  AtarctgeYA, — A+ - arctgeYA
;43Y B e T g2y TR T gty geSys T Be Ok
(Dﬂeﬂ.=0)ﬂl/lﬂ. n
DI
k=1

In case of the formula (45), the values o,,, /®,,, and then o, /®,,, for n=>5 are

(37)

(38)

(39)

(40)

(41)

42)

(43)

(44)

(45)

calculated. The obtained values C, , A, (k =1,2,...5) taken from [6] are provided in Table 2.

10
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Table 2
k C, A,
1 0.2856 0.2856
2 0.548 0.2624
3 0.7656 0.2176
4 0.922 0.1564
5 1 0.078

The values Tpontinear/ Tlinear in case of €Y = 2,4,6,8,10 were respectively 1.04; 1.1; 1.194; 1.285;
1.381. It is interesting to compare Tyniinear/ Tiinear Obtained in case of n=1 andn=5.
Respective dependences are given in Figure 5.

Tnonlinear/ Tlinear

3
? 1
V
/_/ n=5 1 ——
| I
0

Figure 5. Dependences of Period Relation on Displacement

As seen from this diagram, Tyoniinear/ Tiinear increases together with increasing €Y. At the
same time, in case of the same displacement €Y, the relation Tyoniinear/ Tiinear is more in one-
storey building.

In all the reviewed cases of non-linear deformation the loading and unloading occurred
under the same linear law. If the loading occurs under the non-linear law and the
unloading under the linear law, than the period of hysteretic oscillations T, can be

determined by formula [4].

T. +T
Tmc_ _ _men ; JMH. , (46)

where Tyontinear/ Tiinear — respectively the period of the non-linear and linear oscillations.

11
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