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RESEARCH OF NONSTATIONARY PLANE-PARALLEL PRESSURE 
FLOW OF VISCOUS LIQUID UNDER FIXED DIFFERENTIAL 

PRESSURE 
  

A.SARUKHANYAN, A.MARKARYAN, A.MANUKYAN 
 

Nonstationary plane-parallel pressure flow of viscous liquid under the conditions of fixed differential 
pressure is reviewed. 
Regularities of nonstationary hydromechanic parameter change of the plane-parallel pressure flow for 
the presence of fixed differential pressure are obtained. These regularities under the presence of fixed 
differential pressure allow to determine the character of ongoing processes. 
It is obvious from the obtained diagrams that in low Reynolds number, transient process strives for the 
stationary mode, and in their large numbers – nonstationary mode maintains its condition for a long 
time.  

Key words: Plane-parallel nonstationary flow, instantaneous velocity, coefficient, viscous liquid, 
differential pressure. 

 
 
Regularities of change of hydromechanic parameters of nonstationary plane-parallel 
pressure flow of viscous liquid under arbitrary differential pressure and initial velocity 
distribution [1] were obtained. Based on common problem solutions [1], we will obtain the 
regularities of change of hydromechanic parameters of nonstationary plane-parallel 
pressure flow under fixed differential pressure. 
Let viscous liquid at the beginning of nonstationary motion be at a rest, and in t=0, the 
fixed differential pressure affects liquid. In such case, initial and boundary conditions of 
the problem will be: 
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In these function values ( )yϕ  and ( )tf , will calculate the value of coefficient ( )tCk  and 
function ( )tFk  [1]. Will obtain 
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Putting the value of the function ( )tCk  and ( )tFk  into the equation (37) [1], will get the 
regulatory of the velocity change of plane-parallel pressure flow of viscous liquid when 
fixed differential pressure affects liquid at a rest. 
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Taking into the account that 
2

PReumax =  last equality can be written in form of:  
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Therefore, the equality (5) will have the following form: 
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From the last equation will obtain 
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Will determine an average velocity of the effective cross-section from equations (40) [1] and 
(4): 
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Shear stresses between the layers of accelerated liquid based on (38) [1] and (8) would be 
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Momentum coefficients are determined under the formula (48) [1] 
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Coefficients of nonuniform distribution of the velocities would be 
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Experimental computer researches were run according to formulas (8)-(12) and diagrams 
of the function change ( )t,yux ; ( )tV ; ( )tβ ; ( )tα ; ( )t,yτ depending on Reynolds number were 
consequently obtained. 
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The diagrams of instantaneous velocity change according to the effective cross-section 
depending Reynolds number ( 2000,1500,1000,100,1Re = ) are given on figures 1-4.  

 

 
According to the obtained diagrams, it is obvious that in small Reynolds numbers, 
transient process quickly strives for steady-state condition and in large Reynolds number 
values – unsteady condition is maintained for much longer time. 
From the diagrams for instantaneous velocity change (fig. 1-4) and shear stresses (fig. 5-8) 
it is also seen, that in accelerated plane-parallel pressure flow viscous liquid starts its 
motion by the walls of the fixed canal where boundary layer is formed, and in the centre it 
moves like solid. 
Two zones are formed: the zone of the boundary layer where various layers move with 
various velocities resulting in the formation of the shear stresses between liquid and main 
body, and the zone where liquid particles move with equal velocities resulting in the 
absence of the shear stresses between the liquid layers (fig. 5-8). 
Thickness of the boundary layer gradually increases and the diameter of the main body 
decreases and within the certain time laminar boundary layer fully covers the entire 
effective cross-section.  For each case, time for the process stationarization is indicated 
when the velocity in flow centre ñòU99,0 . 

For these very Reynolds numbers the diagrams of the shear stress change (fig. 5-8) are 
drafted. From the obtained diagrams it is seen that at the beginning of the nonstationary 
motion, the shear stresses are formed within the boundary layer zone which gradually 

 
Fig. 1. ,1Re = ( 88.1t =ñò )  Fig. 2. ,10Re = ( 8.18t =ñò ) 

 
Fig. 3. ,100Re = ( 188t =ñò )   Fig. 4. ,1000Re = ( 5.1879t =ñò ) 
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extends and covers the entire effective cross-section. In ñòtt → the diagrams of the shear 
stress change strive for linear law. 

 
 
The diagrams of the change of momentum coefficient β  and kinetic energy α are provided 
on figures 9 and 10. 
 

  
Fig. 9.      Fig. 10. 

 

In small Reynolds numbers these diagrams quickly strive for the stationary 

values 2,1→βñò , 
35
54

=αñò   [1], and in large Reynolds number values, stationarization time 

increases. The stationarization time is indicated for each diagram. 
 

 
Fig. 5. 1Re =     Fig. 6. 10Re =  

 
Fig. 7. 100Re =     Fig. 8. 1000Re =  



A.Sarukhanyan,...                                                                                Energyonline №1(4), 2011 
 

 5

The diagrams for the change of average velocities of the effective cross-section for various 
Reynolds numbers are obtained on figure 11. The stationarization time is indicated for 
each diagram. 
 

 
Fig. 11. 

 

Conclusions 
 
1. The obtained regularities of change of nonstationary hydromechanic parameters of 

plane-parallel pressure flow under fixed differential pressure allow to identify the 
nature of the processes occurred and the mechanism of hydraulic losses. 

2. Criterion for nonstationarity of the plane-parallel pressure flow is Reynolds number. 
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