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PERIODIC LONGITUDINAL WAVES IN TRAPEZOIDAL CHANNELS 

SH. GAGOSHIDZE 
 

Alongshore waves are dominant in open river and maritime canals. For water area, from one side 
limited by arbitrarily sloped shore endlessly running deep into the sea, they were studied by Stocks, but 
due to significant mathematic difficulties for total depth canals the amount of accurate solutions is 
limited by just some private cases which are hardly applicable in practical use. 
Some results of approximate solution of the problem about propagation of alongshore waves laying 
over the stationary flow in trapezoid canal are presented. The solution is based on the application of 
direct Galorkin-Kantorovich method in three-dimension linear equations for wave hydromechanics 
written in cylindrical coordinate system. The obtained solutions maintain the three-dimension 
structure of the waves over the shore slope and lead to the results easily applied in the design. 
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    Longitudinal waves are the dominating ones in open maritime and navigation river 
channels. For a area having only one side bounded by an arbitrarily sloping wall, these 
waves were studied by Stokes [1], but because of great mathematical difficulties for 
channels of finite depth the quantity of exact solutions is limited only to a few particular 
cases [1] - [4] which are difficult for practical use.  

    Below we present some of our results of approximate solution of the problem on 
propagation of longitudinal waves imposed on a stationary flow in a trapezoidal channel.  
The solution is based on the application of the Galerkin-Kantorovich direct method [5] to 
three-dimensional linear equations of wave hydromechanics written in a cylindrical system 
of coordinates x,r,α, (see Fig. 1) 

 

Fig. 1. Design diagram of alongshore waves in trapezoidal channel 

 

where x  is a longitudinal coordinate; r  is the radius vector taking its origin on the line of 
intersection of the bank slope with the channel bottom and acting in the sector bounded by 
the vertical z-axis and the bank slope 0θ towards the horizon; α is a polar angle that varies 
from α=0 on the z-axis to 0α=α on the bank slope plane. The following expressions were 
obtained for the velocity potential (ϕ ) and vertical deviations of the free surface (η ) of 
longitudinal waves:  
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where U0 is the stationary flow velocity; h0 and  a0 are respectively the flow depth and the 
wave amplitude given in the rectangular part of the channel; τπ=σ /2  is the wave 
disturbance frequency; τ  is the period of time; λπ= /2k  is the wave number; λ is the 
length of a longitudinal wave; the signs " ± " correspond to the propagation of counter-flow 
waves and waves whose direction coincides with that of a flow; m is the so-called transverse 
wave number on which depends the wave surface configuration crosswise the channel. In 
particular, if in a channel there propagate relatively short waves for which the number m is 
defined by the asymptotic relation  
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then the free water surface acquires the mode of standing wave oscillations. These 
oscillations have longitudinal stationary nodal lines, the number of which over  the bank 
slope is calculated by the integer part of the number n defined by the equality 
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   For all values of n we use the limit dispersion relation  

                                  )cos/khtanh(cosgk)kU( 000
2

0 α⋅α=−σ ,                                        (5) 

Whereas the connection between the wave amplitudes on the bank line a and above the 
bank slope base a0 is expressed by the relation 
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according to which a is always larger than a0 and much exceeds a0 in the presence of short 
waves, i.e. for large kh0. In that case, the equation of free surface near the bank 
asymptotically leads to the results calculated by the Stokes relation.  Also, if the wave 
steepness on the shore line is  
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where  718.2e =  is the Neper number, then above the shoreline waves will wet the bank 
slope only with destroyed crests. Graphic picture (7) is provided in Fig. 2. 

According to Fig.1. Even for very steep coast slope, in particular, for the slope with an 
angle dipping to the horizon θ0 = 60о, the maximum steepness of the alongshore waves at 

the shoreline does not exceed  2.0a
=

λ
. In larger alongshore wave steepness, above the 

shoreline, will wet the slope of the slope at 60° only with broken ridges. 

Using these relations and estimating the static stability of the bank slope of a 
trapezoidal channel built of loose soil, we can come to a conclusion that by washing-out the 
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bank slope of the channel short longitudinal waves give it a convex shape, whereas 
relatively long waves give a concave shape.  

 

 
Fig. 2. Limit steepness of the wave crest above the shoreline of trapezoidal  channel 

 

R E F E R E N C E S  
 
1. G. Lamb. Hydrodynamics. M:Gostekhizdat. 1947.  
2. A.Constantin Edge waves along a sloping beach // J. Phys. A: Math. Gen. 34. 2001. 
3. R.S.Johnson Some contributions to the theory of edge waves // J. Fluid Mech. Vol 524. 

2005. 
4. Practical manual jn ocean dynamics. Edited by A.V. Nekrasov and E.N.Pelinovski, 

Sankt-Petersburg:Gidromteoizdat. 1992. 
5. L.V. Kantorovich, V.N. Krilov. Approximate methods of higher analysis/ M.:Fizmatgiz. 

1962.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SHALVA GAGOSHIDZE, Professor, Dr. Sci. (Eng.),  
Georgian Technical University, Tbilisi, Georgia 
E-mail: sh.gagoshidze@gmail.com 


