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CALCULATION OF STRENGTH OF ARCH DAMS WITH A GENERAL 
CONTOUR AND OPTIMIZATION OF THEIR VOLUME WITH A 

COMBINED NUMERICAL METHOD 

Z.GEDENIDZE, T.KVITSIANI  

 

The work describes the issues of optimal design of arched dams, when in terms of the geometry of the 
middle surface, the thicknesses of the design sections of a dam ensuring the equal dam resistance or 
minimum dam volume are determined. A system of decision equations is presented with five balance 
equations, three terms of continuity of speed of deformation and one term of complex stressed mode. 
After the solution of the system, eight internal power factors and optimal thickness are determined 
unilaterally. The tensions on the contact surface “Dam-base” are determined by the method of finite 
elements.  
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Determination of the geometry and parameters of modern-design arched dams at the 
initial stage of design is undertaken based on appropriate analogues and recommendations, 
with further precisions made via numerical experiments, based on the analysis of its 
deflected mode. The geometrical parameters of an arched dam identified in this manner 
are often far from their optimal values what is undoubtedly proved by equipotential curves 
drafted in the dam body, which is being exploited and designed on the condition of strength 
[2]. 
The analysis of the deflected mode of dams shows that their different sites are 
characterized by sharply different reserve coefficients on strength. Accordingly, the 
mechanical properties of the material in the dam body are not maximally used and the 
determination of the geometrical properties of the dam needs further research. 
Recently, in the construction of dams, particular attention is paid to the acceleration of 
dam construction and significant reduction of the construction cost, based on optimization 
of the structure approved by calculations. A general criterion of optimal designing of 
structures is often its cost, but considering all influential factors is a very complex task.  
In practice, they often use a criterion, such as minimum weight (volume) in terms of 
strength, stability and rigidity of a structure. Sometimes, a decisive importance is 
attributed not to the minimum weight of the structure, but to the construction technology. 
Therefore, an issue to create an optimal structure is an urgent and complex problem. 
When designing arched dams, aiming at fixing its parameters, it is often necessary to make 
repeated calculations and analyze the gained results. The desirable results with the 
statistically definable arched dams may be reached through a single analysis. 
The tasks of optimization are mostly solved for such structures, whose calculation scheme 
is presented in a one-dimension system, i.e. when their decision equations are given in 
ordinary differential equations. Recently, the tasks of partial optimization (e.g. method of 
given pressures) are solved for some structures, whose behavior under the stress is 
described by differential equations with particular derivative. It ensures only the partial 
improvement of the structure. 
There are only some works about the improvement of arched dams known to present. 
These works are mostly based on numerical experiments and are realized by a complex 
and labor-consuming iteration cycle. 
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In order to characterize the deflected mode of an arched dam, as that of a shell, 
particularly at the initial stage of design (the I and II phases), when a dam type and 
principal parameters are selected for feasibility study purposes, the theory of shells is more 
purposeful to use. The use of this method of calculation is complicated by the complexity of 
the solution to the decision equations due to its complex boundary terms and geometry. 
The calculation of a “dam-base”, as that of a single system is also complicated, particularly 
when the base ground is non-homogenous, has cracks and sometimes cavities. Calculating a 
system “dam-base" by a finite element method is not a bit difficult even in case of 
interrupted parameters. 
The deflected mode of a dam body in the work is evaluated by using a shell theory, with the 
boundary values along the contour of its boundary area fixed for the system “dam-base”.  
 Identifying the unknown thicknesses of the dam is planned from the condition of the 
complex deflected mode, which ensures the term of fluidity on stretching and compression 
of the material at every point by considering different resistance values. Such arched dams 
may be atributed to the category of the same strength what identifies the minimum dam 
volume (weight) based on the maximum use of the mechanical properties of the material on 
the one hand and ensures the correctness of the mathematical problem on the other hand.  
 Instant transition of an arched dam into the plastic state may be ensured even in terms of 
the given load and thicknesses, based on the rational shape of its median surface, but this 
time a structure may turn out to be technologically unecceptable.  
Identifying the deflected mode of the dam body and optimal thicknesses in the design 
sections is possible by using the general theory of rigid shells, through a system of variable-
coefficient decision equations, which is presented in the work as five balance equations [2], 
continuity equation of the median surface deformation speed of three shells [6] and 
condition of strength of complex tensioned state for brittle-ductile materials [7,8]. A system 
of decision equations within the cylindrical coordinate system (Fig. 1) after appropriate 
simple transformations will be as follows: 

 
Fig. 1. Calculation plan of an arched dam  
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From the first eight equations of the system of decision equations (1), we define the internal 
forces and momenti 1 2 1 2 1 2T ,T ,S,M ,M ,H, N , N , what are subject to definite solution. The 
optimal shell thicknesses h, which ensures the approximation of the both shell surfaces to 
the equal strength, is determined from equation nine. We can use the condition of strength 
instead of the latter, which ensures a precise instant transition of one of the facets of the 
dam into the end position.   
In the system of the decision equations, A1 and A2 are Lamé parameters on the median 
surface of the dam, whose analytical expressions for arch dams with any geometry are 
given in the monograph [2]. R1 and R2 are the main curvical radii; q1, q2 and q3 are the 
projections of the external forces acting on the unit area of the median surface of the dam 
(Fig. 2).  

                                                 
    

 
Fig. 2. A plan to define the projection of external forces 
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γ  and 1γ  are the specific weights of the water and dam material (concrete); iF  ( i 1....7= ) 
are the coefficients with their values equalling to: 
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Statically definable system of decision equations (1) can be solved in terms of internal 
forces and momenti what excludes any impact of the assumptions of a kinematic nature in 
the gained results. On the other hand, the solution to such systems in an analytical way is in 
fact impossible. Therefore, we have concluded that in order to study the deflected mode of 
the dam body, or solve the system of decision differential equations we must use numerical, 
in particular, the finite element method [1,4], and to use a numerical method only as finite 
elements in the base ground and accordingly, in the contact surface “dam-base”.  
In order to write the system of decision equations in the finite differences, we make the 
approximation of the dam study area by means of a finite-difference net [1,3], whose axes 
are parallel to the coordinate axes Z  and φ  (See Fig. 3). The net spacing is constant in a 
vertical direction and equals to a, and the spacing jb  is variable in a horizontal direction 
and is selected by the principle of the net node fitting the contour of the study area [5]. The 
system of decision equations in the finite diferences is encripted for each net node, which 
together with the boundary values defined by the method of finite elements makes a 
mathameticaally correct problem. The particular derivatives of such a net in the central 
finite differences will be as follows:  
 
 

(4) 
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Fig. 3. Approximation of the open area of an arch dam with the net of finite difefrences 

 

( )

( )

( )

( )

( )

j

i 1, j i 1, j

j 2 2 2 2
i, j 1 j i, j 1 i 1 i, j j 1

j j 1

2

i 1, j i, j i 1, j2 2

2
j

i, j 1 j i, j 1 j 1 i, j j j 12 2

2
j 2

i 1, j 1 i 1, j 1 j i 1, j2
j 1 j

F 1 F F ;
z 2a

PF F F F ;
φ a

F 1 F 2F F ;
z a

2PF F F F ;
φ a

PF F F F
z φ 2a

+ −

+ − − −
−

+ −

+ − − −

+ + − + −
−

∂
= −

∂
∂ ⎡ ⎤= − + −⎣ ⎦∂

∂
= − +

∂
∂ ⎡ ⎤= + − +⎣ ⎦∂

∂
= − +

∂ ∂

l l l l
l l

l l l l

l
l l

( ) ( ) ( )2 2 2
1 i 1, j 1 j 1 i 1, j i 1, j j 1 jF F F ,− + − − + − −

⎡ ⎤− + − −⎣ ⎦l l l

              (6) 

 
where 

                                           j j 1 j
j 1 j j j 1 j 1 j 1

a a a; ; P .
φ φ φ φ φ φ−

+ − + −

= = =
− − −

l l                                (7) 

 

here  a is the net spacing along z axis; jb  is the net spacing along φ  axis; i  is the point 
index along z axis; j  is the point index along φ  axis. 
 
A system of decision equations may be encrypted quite simply by using expression (6), 
whose further solution gives the optimal parameters of the dam. 
 



Z.Gedenidze,...                                                                                                   Energyonline №2(5), 2011 

 7

 
Fig. 4. Net of finite differences 
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