Грузинский технический университет Союз "Наука и энергетика"

ЭНЕРГИЯ

Научно-технический журнал

4(100)/2021

СОДЕРЖАНИЕ

	Стр.
<i>Р.АРВЕЛАДЗЕ</i> . О восстановлении министерства энергетики Грузии и создании научно-исследовательского центра	7
Г.АРАБИДЗЕ, М.АРАБИДЗЕ, Д.ДОМУЗАШВИЛИ. Оценка воздействия мер по сокращению выбросов парниковых газов в транспортном секторе на основе имеющейся статистики.	14
О.КИГУРАДЗЕ, М.РАЗМАДЗЕ, Л.ПАПАВА, Г.ДАВИТАЯ. Использование солнечной энергии для снижения теплопотерь в зданиях	25
О.КИГУРАДЗЕ, Л.ПАПАВА, М.РАЗМАДЗЕ, Ш.КЕЗУА. Технология процесса сушки.	31
О.БУРДИАШВИЛИ. Компьютерное моделирование противоаварийной автоматики грузинской электроэнергетической системы	35
Т. МУСЕЛИАНИ, М. ГВАРАМАДЗЕ. Определение напряженности магнитного поля двухцепной воздушной линии электропередачи высокого напряжения от расстоянии крайнего провода	39
Н.КЕВХИШВИЛИ, Т.ДЖИШКАРИАНИ, Н.ДЖАВШАНАШВИЛИ, Н.ИНВИЯ, П.СХИРТЛАДЗЕ. Методика определения коэффициента теплопроводности ограждающих стен здания в нестационарном температурном режиме	45
З.ГОБИАНИДЗЕ, ГР.ХАРШИЛАДЗЕ, Т.ГАХАРИЯ. Общий обзор защиты электрооборудования	52
Р.ЧИХЛАДЗЕ, К.ЧИХЛАДЗЕ, З.ДЖАНИАШВИЛИ, ДЖ.ГАБОШВИЛИ.	
Диагностика изоляционной системы трансформатора величиной сопротивления	57
Г.ХУРЦИЛАВА. Исследование энергоэффективной сисстемы управления локомотива типа ЧС-11	64
Т.ЭЛИЗАРАШВИЛИ, Г.АРЗИАНИ. Улучшение профиля напряжения микросетей со статическими вар компенсаторами	69
Т.КОХРЕИДЗЕ, М.ХАХАНОВ. Оценка потерь мощности в аморфно- сверхпроводящем трансформаторе, совмещенном с силовым выпрямителем на основе переходных процессов	75
Д.НАМГАЛАДЗЕ, Т.ГВАНИДЗЕ. Определение стохастических характеристик	
теплоты сгорания природного газа и определение характеристик взаимно-заменяемости (число Воббе)	83
Г.КАПАНАДЗЕ. Особенности магнитных свойств соединений тория с Fe, Co и Ni со структурой CaCu ₅	89

Р.АРВЕЛАДЗЕ. О восстановлении министерства энергетики Грузии и создании научноисследовательского центра.

"Энергия". №4(100). 2021. Тбилиси. с. 7-13. груз. реф. груз. англ. рус.

До 2018 г. в Грузии функционировало Министерство энергетики, которое, с нашей точки зрения, по непонятным причинам, в целях структурного реформирования Правительства Грузии было упразднено. В результате этой реформы положение в энергетике не только не улучшилось, а с каждым годом ухудшается.

Причиной такого положения, с нашей точки зрения, наряду с упразднением Министерства энергетики, является также упразднение всех научно-исследовательских и проектно-изыскательских организаций, которые были укомплектованы высоко-квалифицированными кадрами и успешно разрабатывали проекты и решали проблемы, связанные с функционированием и развитием топливно-энергетического комплекса страны.

В статье рассмотрена часть той деятельности, которую должны осуществлять Министерство энергетики и созданный при нем научно-исследовательский центр.

По мнению автора, неосуществление данного предложения существенно обострит положение в энергетике.

Г.АРАБИДЗЕ, М.АРАБИДЗЕ, Д.ДОМУЗАШВИЛИ. Оценка воздействия мер по сокращению выбросов парниковых газов в транспортном секторе на основе имеющейся статистики. "Энергия". №4(100). 2021. Тбилиси. с. 14-24. груз. реф. груз. англ. рус.

Установлено, что большая часть эмиссии парниковых газов в Грузии приходится на транспортный сектор. В работе затрагивается оценка сокращения эмиссии в результате некоторых проведенных мероприятий. В число мероприятий входят: рост акциза на топливо, поддержка в распространении гибридных и электроавтомобилей, а также введение техосмотров. Проведенный анализ выявил, что меры, предпринятые в сфере автотранспорта после 2016 г., существенно снизили потребление энергии, соответственно понизилась эмиссия парниковых газов. В результате мероприятий, проведенных в 2017-2019 гг. суммарно сэкономлено ≈ 56 237 Тдж энергии ≈ 4 052 Гг эмиссии углекислого газа. Илл. 9, лит. 8 назв.

О.КИГУРАДЗЕ, М.РАЗМАДЗЕ, Л.ПАПАВА, Г.ДАВИТАЯ. Использование солнечной энергии для снижения теплопотерь в зданиях.

"Энергия". №4(100). 2021. Тбилиси. с. 25-30. груз. реф. груз. англ. рус.

Около 80% энергоресурсов, необходимых для жилищно-коммунального хозяйства, используются для отопления зданий. Такой большой процент объясняется снижением энергоэффективности зданий, что вызвано истечением срока их строительства, а также несоответствием нормам новостроек. Этот вопрос можно решить, поделившись опытом развитых стран.

Энергосбережение в сфере ЖКХ стран ЕС осуществляется по трем направлениям:

- 1. Уменьшение теплопотерь зданиями.
- 2. Пассивное и активное использование возобновляемых источников энергии.
- 3. Внедрение современных технологий управления микроклиматом внутри здания, т.н. «Умный дом».

Представлена концепция пассивных домов и их важная функция - значительно улучшенные тепловые характеристики ограничительных конструкций зданий. Показан энергоаудит рассматриваемой квартиры. По результатам аудита проверяются структурные и тепловые характеристики, характерные для пассивного преобразования квартиры в пассивный дом.

Илл. 3, диаграмма 2, лит. 6 назв.

О.КИГУРАДЗЕ, Л.ПАПАВА, М.РАЗМАДЗЕ, Ш.КЕЗУА. Технология процесса сушки. "Энергия". №4(100). 2021. Тбилиси. с. 31-34. груз. реф. груз. англ. рус.

Представлена текущая ситуация, связанная с процессом сушки в Грузии, в том числе текущая ситуация с постсоветского периода. Представлены также типы процесса сушки и преимущества продукта, полученного в результате процесса сушки, желаемая консистенция сырья для процесса сушки (сырье должно быть спелым, неповрежденным), а также этапы предварительной подготовки, желаемый температурный режим, время сушки и условия хранения.

В процессе сушки меняются физические и биохимические свойства сушильного продукта. Во время физических изменений происходит уменьшение веса, объема и деформации с частичной потерей полезных веществ, а при биохимических, в условиях высоких температур - витамины расщепляются.

Развитие вышеупомянутых процессов важно, чтобы избежать непредвиденных последствий. Это требует знания технологии сушки овощей и фруктов, контроля процессов сушки и выбора оптимальных режимов для каждого фрукта и овоща. *Табл. 2, лит. 5 назв.*

О.БУРДИАШВИЛИ. Компьютерное моделирование противоаварийной автоматики грузинской электроэнергетической системы.

"Энергия". №4(100). 2021. Тбилиси. с. 35-38. груз. реф. груз. англ. рус.

Рассмотрено состояние Грузинской электроэнергетической системы. Показано преимущество параллельной работы системы с соседними мощными системами. Описывается проблема устойчивости Грузинской системы при работе в изолированном режиме. Дается описание логики работы противоаварийрой автоматики. Приведен пример работы автоматики при конкретной аварии. Указана необходимость создания компьютерной модели такой автоматики и приведены результаты тестирования модели. По результатам испытаний моделирование прошло успешно. Илл. 1.

Т.МУСЕЛИАНИ, *М.ГВАРАМАДЗЕ* Определение напряженности магнитного поля двухцепной воздушной линии электропередачи высокого напряжения от расстоянии крайнего провода.

"Энергия". №4(100). 2021. Тбилиси. с. 39-44. груз. реф. груз. англ. рус.

Установлено, что на опорах типа У220-2m+14 двухцепных воздушных линий электропередачи напряжением 220 кВ, лимитированные значения индукции магнитного поля (0,2-0,3 мкТл) для безопасности человека, установленные международным агентством рака и Всемирной организацией здравоохранения человека, при наименьший высоте (8,0 м) от поверхности земли, установленый правилами устройства электроустановок безопасно в случае отдаления на 50 м от проекции крайнего провода. Илл. 1, табл. 1, лит. 4 назв.

Н.КЕВХИШВИЛИ, Т.ДЖИШКАРИАНИ, Н.ДЖАВШАНАШВИЛИ, Н.ИНВИЯ, П.СХИРТЛАДЗЕ. Методика определения коэффициента теплопроводности ограждающих стен здания в нестационарном температурном режиме.

"Энергия". №4(100). 2021. Тбилиси. с. 45-51. груз. реф. груз. англ. рус.

В законе Грузии "Об энергоэффективности зданий" подчеркивается, что на строительный сектор приходится около 40% потенциала энергосбережения. Это говорит о том, что внедрение мер по повышению энергоэффективности в зданиях является наилучшим способом снижения энергопотребления. В ближайшем будущем все новые здания и/или их части, существующие здания и/или их часть для продажи или аренды, а также здания, используемые государственным учреждением, должны соответствовать требованиям к зданию с практически нулевым потреблением энергии и подлежать обязательной сертификации энергоэффективности [1]. Аттестацию энергоэффективности здания проводят независимые эксперты, которые на основании энергоаудита должны определить потери тепла от ограничительных конструкций (стены, крыша, пол, окна, двери), проанализировать текущую ситуацию с энергопотреблением и разработать все

возможные меры по его снижению. В свою очередь, для расчета количества тепла, теряемого стенами здания необходимо знать их толщину и теплопроводность. Значение последней зависит от материала стенки и современных методов ее определения целиком основаны на использовании стационарных полей в лабораторных условиях. В приведенной методике определения коэффициента теплопроводности λ устанавливается по скорости распространения тепловой волны в нестационарном температурном поле, что позволяет определить теплоизоляционные характеристики стены по окружающим конструкциям постройки в реальных условиях.

Илл. 4, табл. 1, лит. 4 назв.

З.ГОБИАНИДЗЕ, ГР.ХАРШИЛАДЗЕ, Т.ГАХАРИЯ. Общий обзор защиты электрооборудования.

"Энергия". №4(100). 2021. Тбилиси. с. 52-56. груз. реф. груз. англ. рус.

Успешное производство продукции любого предприятия зависит от надежной и безотказной работы электрооборудования.

Основным узлом электрооборудования являются электрические машины, которые приводят в движение станки, выпускающие продукцию предприятия. Следовательно, защита электрических машин от всевозможных неисправностей как электрического, магнитного, механического и прочего характера, является чрезвычайно актуальной задачей.

В работе анализируются отрицательные неполадки в практике защиты электрооборудования. Предлагается новый метод устранения механических неполадок электрической машины для их надежной эксплуатации. Илл. 1, лит. 3 назв.

Р.ЧИХЛАДЗЕ, К.ЧИХЛАДЗЕ, З.ДЖАНИАШВИЛИ, ДЖ.ГАБОШВИЛИ.

Диагностика изоляционной системы трансформатора величиной сопротивления.

"Энергия". №4(100). 2021. Тбилиси. с. 57-63. груз. реф. груз. англ. рус.

Рассмотрена зависимость сопротивления системы изоляции от продолжительности и величины действия напряжения. Выведены формулы расчета сопротивления отдельной зоны системы изоляции по результатам традиционной схемы измерения сопротивления. Исследована зависимость точности измерения от времени укорачивания электродов, в частности, в течение 10 и 15 минут. Оценивается процентная разница между значениями, измеренными в этом случае, и рассчитаными формулами. Оценивается зависимость этой разницы от величины измеряемого напряжения. В частности, процентная разница между измеренными при удвоении измеряемого напряжения и расчетными значениями, почти удваивается, но меньше нормы.

Илл. 1, табл. 2, лит. 10 назв.

Г. ХУРЦИЛАВА. Исследование энергоэффективной сисстемы управления локомотива типа ЧС-11.

"Энергия". №4(100). 2021. Тбилиси. с. 64-68. груз. реф. груз. англ. рус.

В целях энергосбережения на железной дороге Боржоми-Бакуриани обсуждается вопрос о замене устаревшей релейно-контактной системы управления локомотива типа ЧС-11 на современную энергоэффективную электронно-импульсную систему управления.

Опытный пробег локомотива показал, что модернизированная система управления локомотивом на маршруте Боржоми-Бакуриани, затрачивает значительно меньше электроэнергии и экономит 279,3 кВт.ч (48,6%). Илл. 2, табл. 1, лит. 4.

Т.ЭЛИЗАРАШВИЛИ, *Г.АРЗИАНИ*. Улучшение профиля напряжения микросетей со статическими вар компенсаторами.

"Энергия". №4(100). 2021. Тбилиси. с. 69-74. груз. реф. груз. англ. рус.

Рассматривается вопрос управления напряжением в микросетях, работающих на возобновляемых источниках энергии. Смоделированная микросеть состоит из солнечных электростанций, гидроэлектростанций и центров нагрузки, характер которых меняется во

времени. Модели статических компенсаторов реактивной мощности используются для регулирования напряжения. Обсуждаются результаты как нормального и динамического, так и квази-динамического режимов для характерных сценариев. Сравнительный анализ параметров электрического режима проведен для двух конкретных сценариях: регулирование напряжения в сети классическим методом и управление напряжением в сети с помощью статических компенсаторов реактивной мощности. Илл. 6.

Т.КОХРЕИДЗЕ, М.ХАХАНОВ. Оценка потерь мощности в аморфно-сверхпроводящем трансформаторе, совмещенном с силовым выпрямителем на основе переходных процессов. "Энергия". №4(100). 2021. Тбилиси. с. 75-82. груз. реф. груз. англ. рус.

Дана оценка потерь мощности в аморфно-сверхпроводящем трансформаторе, совмещенном с силовым выпрямителем на основе переходных процессов. Получены выражения расчета потерь, из которых видно, что потери зависят от конфигурации схем и всех его параметров, таких, как индуктивности нагрузки, индуктивности ветви питающего трансформатора, частоты питающего переменного тока. С их увеличением растут соответственно и потери. Напротив, увеличение активного сопротивления переключающего элемента при нормальном состоянии, приводит к снижению потерь.

Установлено, что потери мощности и соответственно коэффициент полезного действия выпрямителя зависят не только от параметров схемы самого выпрямителя, но и от индуктивности нагрузки. Поэтому оптимизация самого выпрямителя без учета нагрузки недопустима.

Илл. 3, лит. 2 назв.

Д.НАМГАЛАДЗЕ, Т.ГВАНИДЗЕ. Определение стохастических характеристик теплоты сгорания природного газа и определение характеристик взаимнозаменяемости (число воббе).

"Энергия". №4(100). 2021. Тбилиси. с. 83-88. груз. реф. груз. англ. рус.

Рассматриваются случайные процессы поставки природнго газа и их параметрыб в частности, теплоемкость и плотность. Рассматриваются данные о поставках природного газа из Азербайджана и России за 5 лет, в частности, значения теплоемкости и плотности. Построены гистограммы рядов теплоемкости и плотности и функция распределения плотности вероятности. Установлено, что функция расспределения плотности вероятности является нормальной. В итоге можно определить число Воббе, которое создает предпосылки принципа управления процессами горения.

Илл. 3, лит. 11 назв.

 Γ . KAПАНАДЗЕ. Особенности магнитных свойств соединений тория с Fe, Co и Ni со структурой $CaCu_5$.

"Энергия". №4(100). 2021. Тбилиси. с.89-92. рус. реф. груз. англ. рус.

Проведен сравнительный анализ магнитных характеристик соединенний тория с 3d-металлами группы железа (Fe, Co и Ni) со структурой типа $CaCu_5$. В рамках модели "жестких зон" рассматривается роль степени заполнения электронами недостроенной 3d-оболочки в формировании магнитных свойств исследуемых соединений $ThMn_5$. Предполагается, что торий может отдать все свои валентные электроны в 3d зоны Fe, Co и Ni.

Изоморфные соединения тория в 3d переходных металлах могут быть как ферромагнетиками, так и парамагнетиками. В связи с вызванным интересом к таким соединениям исследуются также твердые растворы, где при замене одного из 3d-атомов металла другим атомом может наблюдаться переход из парамагнитного состояние в ферромагнитное.

Илл. 1, лит. 4 назв.